24周年

財(cái)稅實(shí)務(wù) 高薪就業(yè) 學(xué)歷教育
APP下載
APP下載新用戶掃碼下載
立享專屬優(yōu)惠

安卓版本:8.7.60 蘋果版本:8.7.60

開發(fā)者:北京正保會(huì)計(jì)科技有限公司

應(yīng)用涉及權(quán)限:查看權(quán)限>

APP隱私政策:查看政策>

HD版本上線:點(diǎn)擊下載>

Monte Carlo Simulation

來源: 正保會(huì)計(jì)網(wǎng)校 編輯: 2014/12/11 17:20:09  字體:

選課中心

多樣班次滿足需求

選課中心

資料專區(qū)

干貨資料助力備考

資料專區(qū)

報(bào)考指南

報(bào)考條件一鍵了解

報(bào)考指南

ACCA P4考試:Monte Carlo Simulation

Traditional sensitivity analysis can be used if one project variable changes independently of all others. However, some project variables may be interdependent (e.g. production volume and unit costs).

Simulation is a technique which allows more than one variable to change at the same time. The classic example of simulation is the "Monte Carlo" method which can be used to estimate not only a project's NPV but also its volatility.

Designing a Monte Carlo Simulation

An assessment of the volatility (or standard deviation) of the net present value of a project requires estimates of the distributions of the key input parameters and an assessment of the correlations between variables. Some of variables may be normally distributed (e.g. demand), but others may be assumed to have limit values and a most likely value (e.g. redundancy costs).

In its simplest form, Monte Carlo simulation assumes that the input variables are uncorrelated. More sophisticated modelling can, however, incorporate estimates of the correlation between variables.

Monte Carlo simulation then employs random numbers to select a specimen value for each variable in order to estimate a "trial value" for the project NPV. This is repeated a large number of times until a distribution of net present values emerges. This distribution will approximate a normal distribution.

Refinements such as the Latin Hypercube technique can reduce the likelihood of spurious results occurring through chance in the random number generation process.

Outputs From Monte Carlo Simulation

The output from the simulation will give the expected NPV for the project and a range of other statistics including the standard deviation of the output distribution.

In addition, the model can rank the significance of each variable in determining the project NPV.

Summary of Monte Carlo Simulation

1. Specify the major variables.

2. Specify the relationship between the variables.

3. Attach probability distributions (e.g. the normal distribution) to each variable and assign random numbers to reflect the distribution.

4. Simulate the environment by generating random numbers.

5. Record the outcome of each simulation.

6. Repeat simulation many times to obtain a frequency distribution of the NPV.

7. Determine the expected NPV and its standard deviation.

我要糾錯(cuò)】 責(zé)任編輯:Sarah
學(xué)員討論(0

免費(fèi)試聽

限時(shí)免費(fèi)資料

  • 近10年A考匯總

    歷年樣卷

  • 最新官方考試大綱

    考試大綱

  • 各科目專業(yè)詞匯表

    詞匯表

  • ACCA考試報(bào)考指南

    報(bào)考指南

  • ACCA考官文章分享

    考官文章

  • 往年考前串講直播

    思維導(dǎo)圖

回到頂部
折疊
網(wǎng)站地圖

Copyright © 2000 - m.galtzs.cn All Rights Reserved. 北京正保會(huì)計(jì)科技有限公司 版權(quán)所有

京B2-20200959 京ICP備20012371號(hào)-7 出版物經(jīng)營(yíng)許可證 京公網(wǎng)安備 11010802044457號(hào)